Chem 1046
Prof George W.J. Kenney, Jr Last Update: 24-Nov-2009 Incomplete Draft

Chapter 18 Thermodynamics and Equilibrium

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!
18.1 First Law of Thermodynamics - Enthalpy. The change in internal energy of a system, $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$

Internal Energy: the sum of the Kinetic and Potential Energies of the particles making up a system
State Function: a property of a system that depends only on it's present state, which is determined by variables such as temperature and pressure

Work: energy exchange that results when a force F moves an object through a distance d ; $\mathrm{w}=\mathrm{F} * \mathrm{~d}$.

Take a cylinder with a piston with a weight on it. Add heat to the system, the pressure inside of the cylinder increases and this causes the piston to move up. Work is done in moving the piston up: work $=$ Force $*$ distance. The system gains energy by the heat absorbed, but loses some by the work done: $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$.

If the heat gained was +165 J and the work done to move the piston up was -92 J , minus because energy of the system was lost, then

$$
\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=(+165 \mathrm{~J})+(-92 \mathrm{~J})=+73 \mathrm{~J}=\text { the change in internal }
$$

energy of the system
Exercise 18.1 In a similar system, the weight on the piston is 2.20 kg . The gas is now compressed and lowered 0.250 m .1 .50 J of heat is evolved. What is the change in internal energy of the system $\Delta \mathrm{U}$. The force of gravity on a mass m in mg is $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$.

Heats of Reaction and Internal Energy

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+} \rightarrow \mathrm{Zn}^{2+} \underset{(\mathrm{aq})}{ }+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \uparrow \quad \Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}=-152.4 \mathrm{~kJ} / \mathrm{mole}
$$

$\mathrm{q}_{\mathrm{p}}=$ heat evolved at constant pressure

A
The increase in volume due to H_{2} is $\Delta \mathrm{V}$.
The change in volume is the height times area of the piston: $\Delta \mathrm{V}=\mathrm{A} * \mathrm{~h}$.
Work $=\mathrm{w}=-\mathrm{F} * \mathrm{~h}=-\mathrm{F} * \Delta \mathrm{~V} / \mathrm{A}=(-\mathrm{F} / \mathrm{A}) * \Delta \mathrm{~V} \quad$ [Force $/$ Area $=$ Pressure]

$$
w=-P \Delta V
$$

From the above example, 1.00 mole Zn reacts with Xcs HCl to produce 1.00 mol H 2
At $25{ }^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}\left[1.01 \times 10^{5} \mathrm{~Pa}\right.$), Volume $=24.5 \mathrm{~L}=24.5 \times 10^{-3} \mathrm{~m}^{3}$.
$\mathrm{PV}=\mathrm{nRT} \quad \mathrm{V}=\mathrm{nRT} / \mathrm{P}=\frac{1.00 \mathrm{~mol} * 0.08205 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K} * 298 \mathrm{~K}}{1.00 \mathrm{~atm}}=25.45=25.5 \mathrm{~L}$

$$
\mathbf{w}=\mathbf{- P} \boldsymbol{\Delta} \mathbf{V}=-\left(1.01 \times 10^{5} \mathrm{~Pa}\right) *\left(24.5 \times 10^{-3} \mathrm{~m}^{3}\right)=-2.47 \times 10^{3} \mathrm{~J}=-\mathbf{2 . 4 7} \mathbf{k J}
$$

Note: $1 \mathrm{Pascal}(\mathrm{Pa})=1 \mathrm{~kg} /\left(\mathrm{ms}^{2}\right) . \quad 1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
The Change in Internal Energy of the System:
$\Delta U=\mathbf{q}+\mathbf{w}=\mathbf{- 1 5 2 . 4} \mathbf{k J}$ [as heat given off] - $\mathbf{2 . 4 7} \mathbf{k J}$ [as expansion work] = $\mathbf{1 5 4 . 9 \mathbf { k J } , ~}$
Exercise 18.2: Methane is burned in excess oxygen to produce carbon dioxide and water. At $25 \mathrm{oC}, 1.00 \mathrm{~atm}$, $\Delta \mathrm{H}=-890.2 \mathrm{~kJ}$. What is w for this change?

Enthalpy

Enthalpy, H is the heat of reaction at constant pressure.

$$
\Delta \mathbf{H}=\mathbf{q}
$$

- or - $\Delta \mathbf{H}=\sum \mathbf{n} \Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{o}}$ (products) - $\sum \mathbf{n} \Delta \mathbf{H}_{\mathrm{f}}^{\mathbf{o}}$ (reactants) \quad [Heat of formation products - reactants] $2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
See Table Below:

$$
\begin{array}{ll}
2 \mathrm{NH}_{3(\mathrm{~g})}=2 *-45.90 \mathrm{~kJ} & \mathrm{CO}_{2(\mathrm{~g})}=-393.5 \mathrm{~kJ} \\
\mathrm{NH}_{2} \mathrm{CONH}_{2(\mathrm{aq})}=-319.2 \mathrm{~kJ} & \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.8 \mathrm{~kJ}
\end{array}
$$

$$
\Delta \mathrm{H}=[(-319.2-285.8)-(2 *-45.90-393.5)] \mathrm{kJ}=-119.7 \mathrm{~kJ} \quad \text { Minus }=\text { Exothermic }
$$

Spontaneous Process $=$ The physical or chemical change occurs by itself
Non-spontaneous - they do not occur by itself.

Rock rolls down a hill
Rock rolls up a hill

Entropy, \mathbf{S} is a thermodynamic quantity that is a measure of how dispersed the energy of a system is among the different possible ways that a system can contain energy.

The Entropy (energy dispersal) of a system increases in a spontaneous process.
A hot cup of coffee on a table cools down as the energy is absorbed by it's surroundings. Energy is dispersed.
A rock falls down a hill. Some Potential Energy is converted to Kinetic Energy, but also some is converted to bumping into the air molecules spreading out the energy. Energy is dispersed.

A gas is in one flask, which is connected to an empty flask. When the valve is opened, gas flows to the empty flask. The energy is dispersed, entropy is increased

Entropy is a state function, depends only on temp and pressure. The SI units are J/K
One mole of ice at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm} \mathrm{~S}=41 \mathrm{~J} / \mathrm{K} \quad$ One mole of water at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}, \mathrm{~S}=63 \mathrm{~J} / \mathrm{K}$
Change in Entropy $=\Delta S=S_{\text {final }}-S_{\text {initial }}$
For water/ice $\Delta \mathrm{S}=\mathrm{S}_{\text {ice }}-\mathrm{S}_{\text {liquid }}=63 \mathrm{~J} / \mathrm{K}-41 \mathrm{~J} / \mathrm{K}=22 \mathrm{~J} / \mathrm{K}$
When ice melts, it increases in Entropy by $22 \mathrm{~J} / \mathrm{K}$
Second Law of Thermodynamics: The total entropy of a system and its surroundings always increases for a spontaneous process - or - For a spontaneous process at a given temperature, T , the change in entropy of the system is greater than the heat divided by the absolute temp - q / T.

The heat of fusion for ice \rightarrow water is $\Delta \mathrm{H}=6.0 \mathrm{~kJ} / \mathrm{mole}$ of ice.

$$
\Delta \mathrm{S}=\mathrm{q} / \mathrm{T}=6,000 \mathrm{~J} / 273 \mathrm{~K}=22 \mathrm{~J} / \mathrm{K}
$$

Example 18.1 $\mathrm{CCl}_{4}, \Delta \mathrm{H}_{\text {vap }}=39.4 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. If one mole of liquid CCl_{4} has an Entropy of $216 \mathrm{~J} / \mathrm{K}$, what is the entropy of 1 mole of the vapor in equilibrium with the liquid.

$$
\begin{aligned}
& \mathrm{CCl}_{4(\mathrm{l})} \rightarrow \mathrm{CCl}_{4(\mathrm{~g})} \quad \Delta \mathrm{H}=39.4 \mathrm{~kJ} / \mathrm{mol} \text { at } 25^{\circ} \mathrm{C} \quad \text { Positive value }=\text { heat is absorbed. } \\
& \Delta \mathrm{S}=\mathrm{q} / \mathrm{T}=39,400 \mathrm{~J} / 298 \mathrm{~K}=132 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& \text { Entropy of } \mathrm{CCl}_{4} \text { increases by } 132 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \text { in going from liq to gas } \\
& \text { Entropy of } \mathrm{CCl}_{4} \text { vapor }=216 \mathrm{~J} / \mathrm{mol} \mathrm{~K}+132 \mathrm{~J} / \mathrm{mol} \mathrm{~K}=348 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

Third Law of Thermodynamics: a substance that is perfectly crystalline at 0 K has entropy of zero.

	From	To	Heat Absorbed	$\Delta \mathbf{S}=\Delta \mathbf{H} / \mathbf{T}$
Heat Some Stuff	0.0 K	2.0 K	0.19 J	$0.19 \mathrm{~J} / \mathrm{K}$
	2.0 K	4.0 K	0.88 J	$0.29 \mathrm{~J} / \mathrm{K}$

The Entropy at $4.0 \mathrm{~K}=0.19 \mathrm{~J} / \mathrm{K}+0.29 \mathrm{~J} / \mathrm{K}=0.48 \mathrm{~J} / \mathrm{K}$

Entropy of Bromine vs increase in Temp. Sharp jumps are at the phase changes.

Standard Entropy $=\mathbf{A b s o l u t e}$ Entropy $=\mathbf{S}^{\mathbf{0}}$ is the entropy value for the standard state of the substance, 1 atm , $1 \mathrm{M}, 25^{\circ} \mathrm{C}$.

Entropy Change for a Reaction See table 18.1 below
Entropy usually increases when:

1. One molecule is broken into two or more smaller molecules
2. There is an increase in the moles of gas produced
3. A solid \rightarrow liquid, liquid \rightarrow gas

For semi-quantative work, you can calculate $\Delta \mathbf{S}^{\mathbf{0}}$ from $\Delta \mathbf{S}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{S}^{\mathbf{0}}{ }_{\text {(products) }}-\sum \mathbf{n} \Delta \mathbf{S}^{\mathbf{0}}{ }_{\text {(reactants) }}$
Example 18.3 Ammonia and Carbon Dioxide react to form Urea at $25^{\circ} \mathrm{C}$. Urea S° is $174 \mathrm{~J} / \mathrm{mK}$. What is $\Delta \mathrm{S}^{0}$?

$$
\begin{array}{llccl}
& 2 \mathrm{NH}_{3(\mathrm{~g})}+ & \mathrm{CO}_{2(\mathrm{~g})} \rightarrow & \mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}_{2(\mathrm{aq})}+ & \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{S}^{\mathrm{o}} & 2 * 192.7 & 213.7 & 174 & 69.95 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
\Delta \mathrm{~S}^{\mathrm{o}} & =[174+69.96]-[2 * 192.7+213.7]=-356 \mathrm{~J} / \mathrm{K} & &
\end{array}
$$

Note the moles of gas decrease, so we expect the entropy to decrease.
If $\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$ is negative, the reaction is spontaneous, if positive the reaction is non-spontaneous, if zero, the reaction is at equilibrium.
$\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}=-119.7 \mathrm{~kJ}-(298 \mathrm{~K} * 0.356 \mathrm{~kJ} / \mathrm{K})=-13.6 \mathrm{~kJ}$. This reaction is spontaneous

Gibbs Free Energy $\quad \Delta \mathbf{G}^{\mathbf{0}}=\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$
The standard states for $\Delta \mathrm{G}^{\circ}$ is 1 atm pressure, 1 M concentration, and $\mathrm{T}=25^{\circ} \mathrm{C}$ or 298 K .
Example 18.4 What is $\Delta \mathrm{G}^{0}$ for nitrogen and hydrogen reacting at $25^{\circ} \mathrm{C}$ to form ammonia.

	$\mathrm{N}_{2(\mathrm{~g})}+$	$3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow$	$2 \mathrm{NH}_{3(\mathrm{~g})}$	
$\Delta \mathrm{H}^{\mathrm{o}}$	0	0	$-45.90 \mathrm{~kJ} / \mathrm{M}$	Std Enthalpies of Formation Table 6.2
$\Delta \mathrm{~S}^{\mathrm{o}}$	191.6	$3 * 130.6$	$2 * 192.7 \mathrm{~J} / \mathrm{K}$	Standard Entropies Table 18.1

$\Delta \mathbf{H}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{H}^{\mathbf{0}}{ }_{\text {(products) }}-\sum \mathbf{n} \Delta \mathbf{H}^{\mathbf{0}}{ }_{\text {(reactants) }}=[2 *-45.90]-0=-91.8 \mathrm{~kJ}$
$\Delta \mathbf{S}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{S}^{\mathbf{0}}{ }_{\text {(products) }}-\sum \mathbf{n} \Delta \mathbf{S}^{\mathbf{0}}{ }_{\text {(reactants })}=[2 * 192.7] \mathrm{J} / \mathrm{K}-[191.6+3 * 130.6] \mathrm{J} / \mathrm{K}=-198.0 \mathrm{~J} / \mathrm{K}$
$\Delta \mathbf{G}^{\mathbf{0}}=\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}=-91.8 \mathrm{~kJ}-[298 \mathrm{~K} *-0.1980 \mathrm{~kJ} / \mathrm{K}]=-32.8 \mathrm{~kJ}$
$\Delta \mathbf{G}_{\mathbf{f}}^{\mathbf{0}}$ is the Standard Free Energy of Formation = the free energy change that occurs when 1 mole of substance is formed from its elements in their stablest states at 1 atm and $\mathrm{T}=25^{\circ} \mathrm{C}$.
$\Delta \mathbf{G}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{G}_{\mathbf{F}}^{\mathbf{0}}$ (products) $-\sum \mathbf{n} \Delta \mathbf{G}_{\mathbf{F}}^{\mathbf{0}}$ (reactants) $=$ See Table 18.2
If $\Delta \mathrm{G}^{0}$ is more negative than $-10 \mathrm{~kJ} \quad$ Reaction is spontaneous
If $\Delta \mathrm{G}^{0}$ is more positive than $+10 \mathrm{~kJ} \quad$ Reaction is NON-spontaneous
If ΔG^{0} is small negative or positive Reaction is an equilibrium mixture

Example 18.6

Exercise 18.8

Coupling Reactions Rust \rightarrow Iron
Free Energy Change during a reaction
Free Energy Change \& Equilibrium Constants

$$
\Delta \mathbf{G}^{\mathbf{0}}=-\mathbf{R T} \ln \mathrm{K}
$$

Where K is the Thermodynamic Equilibrium Constant - concentration of gases are expressed as partial pressures in atm, solutions as M .

TABLE 6.2	Standard Enthalpies of Formation (at $\mathbf{2 5}{ }^{\mathbf{\circ}}$) ${ }^{*}$				
Substance or lon	$\Delta H_{f}^{\prime}(\mathrm{kJ} / \mathrm{mol})$	Substance or lon	$\Delta H_{f}(\mathrm{~kJ} / \mathrm{mol})$	Substance or lon	$\Delta H_{f}^{\prime}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{e}^{-}(\mathrm{g})$	0	$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$	-166.1	$\mathrm{NO}_{2}(\mathrm{~g})$	33.10
Bromine		$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{l})$	-191.8	$\mathrm{HNO}_{3}(a q)$	-207.4
$\operatorname{Br}(\mathrm{g})$	111.9	Chlorine		Oxygen	
$\mathrm{Br}^{-}(a q)$	-121.5	$\mathrm{Cl}(\mathrm{g})$	121.3	$\mathrm{O}(\mathrm{g})$	249.2
$\mathrm{Br}^{-}(\mathrm{g})$	-219.0	$\mathrm{Cl}^{-}(a q)$	-167.2	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Br}_{2}(\mathrm{~g})$	30.91	$\mathrm{Cl}^{-}(\mathrm{g})$	-234.0	$\mathrm{O}_{3}(\mathrm{~g})$	142.7
$\mathrm{Br}_{2}(l)$	0	$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{OH}^{-}(a q)$	-230.0
$\operatorname{HBr}(\mathrm{g})$	-36.44	$\mathrm{HCl}(\mathrm{g})$	-92.31	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
Calcium		Fluorine		$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{F}(\mathrm{g})$	79.39	Silicon	
$\mathrm{Ca}^{2+}(a q)$	-542.8	$\mathrm{F}^{-}(\mathrm{g})$	-255.1	$\mathrm{Si}(s)$	0
$\mathrm{CaCO}_{3}(s$, calcite)	-1206.9	$\mathrm{F}^{-}(a q)$	-332.6	$\mathrm{SiCl}_{4}(l)$	-687.0
$\mathrm{CaO}(\mathrm{s})$	-635.1	$\mathrm{F}_{2}(\mathrm{~g})$	0	$\mathrm{SiF}_{4}(\mathrm{~g})$	-1614.9
Carbon		$\mathrm{HF}(\mathrm{g})$	-272.5	$\mathrm{SiO}_{2}(s$, quartz)	-910.9
$\mathrm{C}(\mathrm{g})$	716.7	Hydrogen		Silver	
$\mathrm{C}(s$, diamond)	1.897	$\mathrm{H}(\mathrm{g})$	218.0	$\mathrm{Ag}(s)$	0
$\mathrm{C}(s$, graphite)	0	$\mathrm{H}^{+}(a q)$	0	$\mathrm{Ag}^{+}(a q)$	105.6
$\mathrm{CCl}_{4}(\mathrm{~g})$	-95.98	$\mathrm{H}^{+}(\mathrm{g})$	1536.2	$\mathrm{AgBr}(\mathrm{s})$	-100.4
$\mathrm{CCl}_{4}($ l $)$	-135.4	$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{AgCl}(\mathrm{s})$	-127.1
$\mathrm{CO}(\mathrm{g})$	-110.5	lodine		$\mathrm{AgF}(s)$	-204.6
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{I}(\mathrm{g})$	106.8	$\mathrm{AgI}(\mathrm{s})$	-61.84
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$	-677.1	$\mathrm{I}^{-}(a q)$	-55.19	Sodium	
$\mathrm{CS}_{2}(\mathrm{~g})$	116.9	$\mathrm{I}^{-}(\mathrm{g})$	-194.6	$\mathrm{Na}(\mathrm{g})$	107.3
$\mathrm{CS}_{2}(l)$	89.70	$\mathrm{I}_{2}(s)$	0	$\mathrm{Na}(\mathrm{s})$	0
$\mathrm{HCN}(\mathrm{g})$	135.1	$\mathrm{HI}(\mathrm{g})$	26.36	$\mathrm{Na}^{+}(\mathrm{aq})$	-240.1
$\mathrm{HCN}(l)$	108.9	Lead		$\mathrm{Na}^{+}(g)$	609.3
$\mathrm{HCO}_{3}{ }^{-}(a q)$	-692.0	$\mathrm{Pb}(\mathrm{s})$	0	$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	-1130.8
Hydrocarbons		$\mathrm{Pb}^{2+}(a q)$	-1.7	$\mathrm{NaCl}(\mathrm{s})$	-411.1
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.87	$\mathrm{PbO}(s)$	-219.4	$\mathrm{NaHCO}_{3}(s)$	-950.8
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.47	$\mathrm{PbS}(s)$	-98.32	Sulfur	
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.68			$\mathrm{S}(g)$	277.0
$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	49.0	$\mathrm{N}(\mathrm{~g})$	472.7	$\mathrm{S}(s$, monoclinic)	0.360
Alcohols		$\mathrm{N}_{2}(g)$		$\mathrm{S}(s$, rhombic)	0
$\mathrm{CH}_{3} \mathrm{OH}(l)$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-238.7	$\mathrm{NH}_{3}(g)$	-45.90	$\mathrm{S}_{2}(g)$	128.6
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ Aldehydes	-277.7	$\mathrm{NH}_{4}^{+}(a q)$	-132.5	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.8
$\mathrm{HCHO}(\mathrm{g})$	-117	$\mathrm{NO}(\mathrm{g})$	90.29	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.50

$S^{0} \quad$ Degree of "Disorder"

\square					
TABLE 18.1	Standard Entropies (at $\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}^{\text {* }}$				
Substance or lon	$\begin{aligned} & S_{f}^{\circ} \\ & \mathrm{J} /(\mathrm{mol} \cdot \mathrm{~K}) \end{aligned}$	Substance or lon	$\begin{aligned} & S_{i}^{\circ} \\ & \mathrm{J} /(\mathrm{mol} \cdot \mathrm{~K}) \end{aligned}$	Substance or Ion	$\begin{aligned} & S_{f}^{\circ} \\ & \mathrm{J} /(\mathrm{mol} \cdot \mathrm{~K}) \end{aligned}$
$\mathrm{e}^{-}(g)$	20.87	Aldehydes (continued)		Nitrogen (continued)	
Bromine		$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$	246.4	$\mathrm{NO}_{2}(\mathrm{~g})$	239.9
$\operatorname{Br}(\mathrm{g})$	174.9	$\mathrm{CH}_{3} \mathrm{CHO}(l)$	160.4	$\mathrm{HNO}_{3}(a q)$	146.4
$\mathrm{Br}^{-}(a q)$	82.4	Chlorine		Oxygen	
$\mathrm{Br}^{-}(\mathrm{g})$	163.4	$\mathrm{Cl}(\mathrm{g})$	165.1	$\mathrm{O}(\mathrm{g})$	160.9
$\mathrm{Br}_{2}(\mathrm{~g})$	245.3	$\mathrm{Cl}^{-}(a q)$	56.5	$\mathrm{O}_{2}(\mathrm{~g})$	205.0
$\mathrm{Br}_{2}(l)$	152.2	$\mathrm{Cl}^{-}(\mathrm{g})$	153.2	$\mathrm{O}_{3}(\mathrm{~g})$	238.8
$\mathrm{HBr}(\mathrm{g})$	198.6	$\mathrm{Cl}_{2}(\mathrm{~g})$	223.0	$\mathrm{OH}^{-}(a q)$	-10.75
Calcium		$\mathrm{HCl}(\mathrm{g})$	186.8	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	188.7
$\mathrm{Ca}(\mathrm{s})$	41.59	Fluorine		$\mathrm{H}_{2} \mathrm{O}(l)$	69.95
$\mathrm{Ca}^{2+}(a q)$	-53.1	$\mathrm{F}(\mathrm{g})$	158.6	Silicon	
$\mathrm{CaCO}_{3}(s$, calcite $)$	92.9	$\mathrm{F}^{-}(g)$	145.5	$\mathrm{Si}(\mathrm{s})$	18.82
$\mathrm{CaO}(s)$	38.21	$\mathrm{F}^{-}(a q)$	-13.8	$\mathrm{SiCl}_{4}(l)$	239.7
Carbon		$\mathrm{F}_{2}(\mathrm{~g})$	202.7	$\mathrm{SiF}_{4}(g)$	282.7
$\mathrm{C}(\mathrm{g})$	158.0	$\mathrm{HF}(\mathrm{g})$	173.7	$\mathrm{SiO}_{2}(\mathrm{~s}$, quartz)	41.46
$\mathrm{C}(s$, diamond)	2.377	Hydrogen		Silver	
$\mathrm{C}(s$, graphite $)$	5.740	$\mathrm{H}(\mathrm{g})$	114.6	$\mathrm{Ag}(\mathrm{s})$	42.55
$\mathrm{CCl}_{4}(g)$	309.7	$\mathrm{H}^{+}(a q)$	0	$\mathrm{Ag}^{+}(a q)$	72.68
$\mathrm{CCl}_{4}(l)$	216.4	$\mathrm{H}^{+}(\mathrm{g})$	108.8	$\mathrm{AgBr}(\mathrm{s})$	107.1
$\mathrm{CO}(\mathrm{g})$	197.5	$\mathrm{H}_{2}(\mathrm{~g})$	130.6	$\mathrm{AgCl}(s)$	96.2
$\mathrm{CO}_{2}(\mathrm{~g})$	213.7	lodine		$\mathrm{AgF}(s)$	83.7
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$	-56.9	$\mathrm{I}(\mathrm{g})$	180.7	$\mathrm{AgI}(\mathrm{s})$	115.5
$\mathrm{CS}_{2}(\mathrm{~g})$	237.9	$\mathrm{I}^{-}(a q)$	109.6	Sodium	
$\mathrm{CS}_{2}(l)$	151.3	$\mathrm{I}^{-}(\mathrm{g})$	169.2	$\mathrm{Na}(\mathrm{g})$	153.6
$\mathrm{HCN}(\mathrm{g})$	201.7	$\mathrm{I}_{2}(\mathrm{~s})$	116.1	$\mathrm{Na}(\mathrm{s})$	51.46
$\mathrm{HCN}(l)$	112.8	$\mathrm{HI}(\mathrm{g})$	206.5	$\mathrm{Na}^{+}(\mathrm{aq})$	59.1
$\mathrm{HCO}_{3}{ }^{-}(a q)$	91.2	Lead		$\mathrm{Na}^{+}(g)$	147.8
Hydrocarbons		$\mathrm{Pb}(s)$	64.78	$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$	138.8
$\mathrm{CH}_{4}(\mathrm{~g})$	186.1	$\mathrm{Pb}^{2+}(a q)$	10.5	$\mathrm{NaCl}(s)$	72.12
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	219.2	$\mathrm{PbO}(s)$	66.32	$\mathrm{NaHCO}_{3}(s)$	101.7
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	229.5	$\mathrm{PbS}(\mathrm{s})$	91.34	Sulfur	
$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	173.4	Nitrogen		$\mathrm{S}(\mathrm{g})$	167.7
Alcohols		$\mathrm{N}(\mathrm{g})$	153.2	$\mathrm{S}(s$, monoclinic)	33.03
$\mathrm{CH}_{3} \mathrm{OH}(l)$	126.8	$\mathrm{N}_{2}(g)$	191.6	$\mathrm{S}(\mathrm{s}$, rhombic)	32.06
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	160.7	$\mathrm{NH}_{3}(\mathrm{~g})$	192.7	$\mathrm{S}_{2}(\mathrm{~g})$	228.1
Aldehydes		$\mathrm{NH}_{4}^{+}(a q)$	113.4	$\mathrm{SO}_{2}(\mathrm{~g})$	248.1
$\mathrm{HCHO}(\mathrm{g})$	219.0	$\mathrm{NO}(\mathrm{g})$	210.6	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	205.6

Chm 1046 Ch 18 Thermodynaics

Summary of Equations
change in internal energy of the system
Work done
$\Delta \mathbf{U}=\mathbf{q}+\mathbf{w}$
$w=-P \Delta V$

